Megaparsec scale structures in clusters

The Mpc radio arcs in Abell 3376

The Mpc filament in Abell 85

Florence Durret (Institut d'Astrophysique de Paris)

Mpc radio arcs in Abell 3376

Collaborators

Joydeep Bagchi (IUCAA, Pune, India) Gastão B. Lima Neto (IAG/USP, São Paulo, Brazil) Surajit Paul (Universität Wurzburg, Germany)

The Mpc radio arcs in Abell 3376 (z=0.046)

Smoothed ROSAT X-ray image and radio contours (VLA, 20cm)

Bagchi, Durret, Lima Neto & Paul 2006, Science 314, 791

A zoom on the radio arcs

A few characteristics of Abell 3376

- 2 Mpc diameter radio arcs detected with the VLA at 20 cm, no optical or X-ray counterparts (ROSAT or XMM)
- Elongated X-ray emission (ROSAT, XMM-Newton)

Where do these radio arcs come from?

- Radio synchrotron emission requires accelerated electrons
- Distribution on an ellipse with major axis along direction of X-ray elongation
- Two possibilities:
- Major cluster merger(s)
- Cosmological shock waves caused by energetic collisions, mergers and infall on the cluster during the cluster formation

Abell 3376 at other wavelengths Optical: completely offcentered BCG galaxy

Radio map: strong bent source and two faint extended relics DSS optical image (circles=galaxies with redshifts in the cluster range)

- Maximum of X-ray emission coincides with strong radio source
- This region (green ellipse) contains at least 5 AGN (Chandra)
- No relation between east radio relic and X-ray emission
- No radio or X-ray emission from cD galaxy

Radio map

Smoothed X-ray images

XMM-Newton

Chandra

Zoom of strong radio source

DSS optical counterpart

Radio map could suggest a movement towards the SW

Radio emission can also be the superposition of individual radio sources

Merging hypothesis: a cluster has crossed the main cluster from SW and got stripped

Smoothed XMM-Newton image

Abell 3376 maps

Optical image

X-ray metallicity map (XMM)

Temperature map

Comparison with numerical simulations (Takizawa 2005, ApJ 629, 791)

Fig. 3.— Upper panels show snapshots of the density distribution on the z=0 surface at $t=0.56,\,0.67,\,0.78,\,0.89,\,$ and 1.0 Gyr of the radial infall model. Lower panels show the same ones but for the temperature distribution.

What do these maps tell us?

- Optical: the brightest cluster galaxy is completely offset towards the SW
- There is a group of bright galaxies coinciding with the region of maximum X-ray emission
- X-ray temperature map shows alternatively hotter and cooler gas
- X-ray metallicity map shows inhomogeneous metal distribution

Bright galaxies aligned along a filament? Orientation of filament agrees with direction of merging

Galaxy positions and movements: the merger takes place in the plane of the sky

Redshift histogram

Positions of galaxies with redshifts in the cluster

Tentative interpretation

- At least one merging episode is taking place, coming from the SW
- Previous merging episodes may have taken place, accounting for the electron acceleration by shocks in the Mpc scale radio arcs
- Alternatively, the electrons may have been accelerated by cosmological shock waves during the formation of the cluster

Comparison with possibly similar clusters

Abell 3667

ROSAT X-ray contours:
elongated structure
suggesting a previous
merger

Radio map: extended emission on either side of the X-ray elongation

The « bullet » cluster 1E0657-56: a small cluster has crossed another cluster

Radio 1.3GHz + optical image ROSAT X-rays + optical image

Chandra X-rays

Barrena et al. 2002, A&A 386, 816; Markevitch et al. 2002, ApJ 567, L27

A model for the bullet cluster

- Simulation of substructure propagation of a small cluster in a larger one, taking into account the tidal force
- Calculate the positions of the X-ray substructure and of its corresponding dark halo as a function of time, and other quantities (Mach number of the merger shock)
- Could be applied to Abell 3376

Prokhorov & Durret 2007, A&A 474, 375

The 4 Mpc filament in Abell 85 at X-ray and optical wavelengths

Collaborators

X-rays

Gastão B. Lima-Neto (IAG, Brazil)
William Forman (CfA, USA)
Eugene Churazov (MPE, Garching)

Optical

Gwenaël Boué, Gary Mamon (IAP) Christophe Adami, Olivier Ilbert (LAM, France) Véronique Cayatte (Luth, France)

Do clusters remember how they formed?

- Numerical simulations predict that clusters form at the intersection of filaments
- Preferential orientation at all scales:

central galaxy brightest galaxies overall galaxy distribution X-ray gas distribution

Abell 85 shows preferential orientations at all these scales

X-ray filament detected by ROSAT (PSPC) and confirmed by XMM-Newton

X-ray filaments

 When ROSAT all sky survey background fluctuations were correlated with Abell cluster catalogue, no filament was detected

X-ray filaments are rare and/or weak

Prediction: $n_e < (7.4 \ 10^{-5} - 1.4 \ 10^{-4}) \ h_{100}^{-1/2} \ cm^{-3}$ in agreement with hydro simulations

(Briel & Henry 1995, A&A 302, L9)

The X-ray filament in Abell 85

Discovery with the ROSAT PSPC

Confirmation with XMM-Newton

The two XMM pointings superimposed on ROSAT contours

XMM raw data

XMM-Newton

The filament after subtraction of an azimuthally averaged model

ROSAT contours

Results

X-ray temperature, metallicity and luminosity of the filament:

2 keV < kT < 2.8 keV

 $0.04 < Z < 0.33 Z_{solar}$

 $L_{\rm X}$ (2-10 keV)= 5.2 10⁴² h_{50}^{-2} erg s⁻¹

(MEKAL model, N_H fixed)

Values typical of groups, though temperature is rather high

(Durret, Lima-Neto, Forman & Churazov 2003, A&A 404, L29)

The « filament » was interpreted as made of groups falling onto the cluster

The optical view

Daniel Gerbal's artist view of the Abell 85/87/89 complex

- > A « filament » (Abell 87) falls onto the main cluster (Abell 85)
- The impact region is just north of the South blob
- The X-ray gas is compressed in the impact zone and hotter. There are also more emission line galaxies in this region
- There should be a concentration of galaxies and more star forming galaxies in the filament

New optical data on the Abell 85 filament

 Deep u* g' r' i' imaging with CFHT Megacam (1°x1° field)

 Halpha and R imaging with ESO 2.2m WFI (38'x36' field)

(Boué, Durret, Adami, Mamon, Ilbert & Cayatte 2008, A&A submitted)

Galaxy luminosity functions (GLFs) in the filament region

Global GLFs in the four bands

GLFs in 16 squares in the i' band

GLFs in the 3 main regions in the i' band

The red region is quite densely populated, while there are hardly any galaxies in the green region

There is a clear galaxy excess in the filament relative to the field

Halpha imaging

- 101 galaxies detected in Halpha image
- But continuum subtraction is tricky!
- And filter cut +telluric absorption!

Are the galaxies detected in Halpha members of the filament?

- 23 have redshifts in the cluster
- 2 have redshifts outside the cluster
- 58 galaxies have photometric redshifts
 z_{phot} > 0.4 but a few may be in the filament

Spatial distribution of the galaxies detected in Halpha

- Blue circles = Halpha detections in the cluster
- O Black circles=SDSS spectrum with Ha
- □ Red squares=Ha detections, only zphot
- X Green crosses=Ha detections, no zphot

The filament is probably a dynamically bound structure

Serna & Gerbal (1996, A&A 309, 65) method suggests galaxies circled in black are dynamically bound

- Filled red circles=ellipticals
- Filled green triangles=intermediate spirals
- Blue squares=late type spirals

Conclusions

- Optical data agree with the hypothesis that the filament discovered in X-rays is also a region with a galaxy overdensity
- There may be an excess of Halpha emitting galaxies in the filament (and in the impact region), suggesting higher star formation rates
- These results confirm that the filament is most probably made of groups falling on to the main Abell 85 cluster

Lunch time!

Copyright Gustave Doré (1835): Gargantua by François Rabelais (1535)